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Abstract-The convective heat transfer and fluid flow that occurs during laser surface melting is examined 
through a series of numerical computations. The momentum equations and the energy equation are solved 
by a finite-difference method with a grid-stretching transformation, which places more grid points in the 
molten region. The effects of thermocapillary convection in the melt and the moving speed of the external 
heat source on the shape of the solid-liquid interface are considered. Results show that the latent heat of 
fusion and different dimensionless parameters associated with the moving uniform heat flux have profound 

effects on determining the melting shape. 

1. INTRODUCTION 

IN RECENT years, the availability of high power, con- 
tinuous-wave CO? laser beams which provide uniform 
power intensities over a large cross-sectional area has 
led to the development of the laser surface melting 
and alloying technique. This manufacturing technique 
is of value in producing a surface layer with desired 
properties such as wear and corrosion resistance. This 

is why we are concerned with understanding the 
phenomena of welding pool convection, which affects 
the size of the molten region and the microstructure 

of the heat affected zone. 
In laser processing a molten portion forms on the 

surface of the substrate. Kou et al. [l] used a heat 
conduction equation with a finite-difference method 
to analyse the problem of rapid melting and solidi- 
fication of a surface subjected to a heat flux with 
constant moving velocity. But the convection in the 
melting pool is not taken into consideration. The con- 

vection flow pattern in the melt has been exper- 
imentally observed by Arata et al. [2]. They used a 
transmission X-ray high-speed cinematography 
method to reveal the flow motion in cross-sectional 
Al alloys melted by laser and electron beams. The 
thermocapillary convection induced by the surface 
tension gradient along the free surface may be gen- 
erated due to inhomogeneous heating of the free sur- 
face of the molten layer by laser radiation. Usually, 
thermocapillary convection is coupled with buoyancy- 
driven convection which is induced by the temperature 
gradient inside the molten region. Hence, the surface- 
tension gradient is not the only source of convection 
motions. The influence of the buoyancy force is minor 
if the dimensions of the fluid system are small or if the 
system is exposed to microgravity conditions. The 
magnitude of maximum melt depths in the laser sur- 
face melting and alloying process is in the submicro- 
meter range [3]. Under this condition buoyancy- 

driven convection is negligible. The large surface-ten- 
sion gradient is also responsible for the surface defor- 
mation along the gas-liquid interface. Because of the 
rapid resolidification process during laser surface 
melting, the distortion of the liquid surface is frozen 
into solid and establishes a roughened ripple surface. 

Since the characteristics of the resolidified material 

may be influenced by the convection-flow pattern dur- 
ing the laser surface melting, it is important to predict 
the velocity and temperature profile in the melt. The 
difficulty associated with the surface-melting problem 
is that there are two kinds of free boundary existing 
during laser melting. One is the solid-liquid interface 
and the other is the gas-liquid interface. The position 
of the free boundaries is unknown and must be deter- 
mined as a part of the solution. Anthony and Cline 
[4] considered the one-dimensional fluid flow induced 
by surface temperature gradient during laser melting 
and predicted the heights of surface ripple. In their 
analysis the inertia terms of the Navier-Stokes equa- 
tions are assumed negligible in the melt. Srinivasan 
and Basu [5] numerically computed the thermo- 
capillary flow in a rectangular cavity during laser melt- 

ing. The gas-liquid interface was assumed to be flat 
with a sinusoidal variation of temperature. There- 
after, Basu and Srinivasan [6] numerically simulated 
a two-dimensional steady-state laser melting problem 
but did not consider the moving heat source in the 
model. Chan et al. [7] used a two-dimensional tran- 
sient model to analyse the convective heat transfer 
and fluid flow in a laser melted pool. In their model 
the influences of the latent heat of fusion, the scanning 
velocity on the cross-section in the direction of the 
moving heat source, and the deformation of the gas- 
liquid interface are not considered. Oreper and 
Szekely [8] represented a transient behaviour of the 
fluid flow and temperature field in a TIG (tungsten- 
inert-gas) welding process. 

The influence of the thermocapillary convection 
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NOMENCLATURE 

a,b stretching parameters X dimensionless horizontal coordinate 

B defined in equation (14) Y length of the physical domain in the Y- 

c, specific heat direction 

d width of the laser beam Y dimensionless vertical coordinate. 

9 gravitational acceleration 

Gr Grashof number Greek symbols 

H dimensionless enthalpy 

HI defined in equation (7d) ; 

thermal diffusivity 
volume expansion coefficient 

H, defined in equation (7d) Y surface-tension temperature coefficient 

k thermal conductivity of liquid and solid ?> x coordinate directions in the 

L dimensionless latent heat of fusion computational domain 

Ma Marangoni number Q, K, lengths of the computational domain 

P dimensionless pressure p dynamic viscosity 

Pr Prandtl number V kinematic viscosity 

4 net heat flux P density 

Re Reynolds number 0 surface tension 

S(x, y) dimensionless solid-liquid interface 

; 

vorticity 

T dimensionless temperature any physical variable 

7-0 ambient temperature ti stream function. 

u dimensionless scanning velocity of the 

laser beam Subscripts 

u, characteristic velocity in the molten m melting point 

region X derivatives with respect to x 

IA dimensionless horizontal velocity Y derivatives with respect to Y. 

Z! dimensionless vertical velocity 

x length of the physical domain in the x- Superscript 

direction dimensional value. 

coupled with the scanning velocity of a laser beam on 
the molten region is neglected in the previous litera- 
ture. The problem examined in the present study is 
related to that of Kou et al. [l]. Consider a laser 
beam with a constant scanning speed impinging on 
the surface of a semi-infinite workpiece. In order to 

simplify the calculation the free surface of the gas- 
liquid interface is assumed to be flat. The two-dimen- 
sional heat- and fluid-flow phenomena during surface 
melting are analysed using a finite-difference for- 
mulation with non-uniform grid transformation. The 

effect of the latent heat on the melting depth is con- 
sidered. The influences of Marangoni number, Prandtl 
number, and scanning speed on the flow fields, the 
temperature fields, and the melting shape are dis- 
cussed with physical interpretations. 

2. MATHEMATICAL FORMULATION 

where (T, is the surface tension of the liquid at the 
melting temperature and constant y is the rate of 
change of surface tension with temperature. 

Consider a rectangular laser beam with a constant The results of the asymptotic solutions [9] and 

scanning speed impinging on the surface of a semi- numerical computations [IO] for thermocapillary flow 

infinite workpiece. The laser beam has a width d in in a rectangular cavity show that for a small capillary 

the scanning direction and length I>> din the cross- number the gas-liquid surface deformation is about 

scanning direction. The system is assumed to be in a 0(10-3) compared with the height of the cavity. The 

quasi-steady state which means that the heat con- capillary number is defined by Ca = yAT’/a,, where 

duction and fluid flow are in a steady state as viewed AT’ is the maximum temperature difference at the 

by an observer located at the centre of the laser beam 
and travelling with the heat source at the same speed. 
A schematic diagram of the system is shown in Fig. 
1. The origin of the moving coordinates is fixed at the 

centre of the heat source. The heat conduction and 
fluid flow are primarily concerned in the z’ = 0 plane 

without consideration of the influences of conduction 
and thermocapillary flow in the z/-direction. 

The Boussinesq approximation is assumed to be 
valid for density variation in the melt, which means 
that density p satisfies the following relation : 

P = ~m[l -IV’- TrJl. (1) 

The dependence of the surface tension on the tem- 
perature is assumed to be linear 

a(T’) = o,-y(T’- T,) (2) 
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FIG. 1. Schematic diagram of the physical system. 

gas-liquid interface. As mentioned by Srinivasan and 
Basu [5], the capillary number is much less than 1 for 
most molten metals during laser melting. Therefore, 
the free surface of the gas-liquid interface is assumed 
to be flat. In the present study we concentrate on 
the effect of the interaction of the thermocapillary 
convection with the moving heat source on the shape 
of the solid-liquid interface. In order to simplify the 
computation, the thermodynamic properties are 
assumed to be the same for both liquid and solid 
phases. In a real physical condition, the thermo- 
dynamic properties are different for solid and liquid 
phases. The results of Kou et al. (11 show that the 
temperature profiles and the shape of the melting pool 
do not alter using different values of thermodynamic 
properties in the solid and liquid phases and the influ- 
ence on the melting depth depends on the order of 
difference. It is obvious that under this assumption, 
the physical characters are not changed significantly. 
The enthalpy H’ is defined as follows : 

H’ = pC,,(T’- To) for T’ < T, 

H’=pC,,(T,,-T,,)+pL’ forT’= T, 

(W 

(3b) 

H’ = pL’+pC,(T’- To) for T’ > T,. (3c) 

In this problem the convection flow pattern is driven 
dominantly by the shear stress induced by the surface 
tension gradient at the gas-liquid interface. By exam- 
ining the shear-stress balance along the gas-liquid 
interface the characteristic velocity in the molten 
region can be obtained as follows : 

UC = yqdjkp. 

The following non-dimensional variables are intro- 
duced : 

x = xl/d, y = y’ld, u = u’/U, 

v = v~jUc, U = U’jU,, L = L’/(qd/pu) 

P = p’l(yqlk), H = H’l(qdla) 

T = (T’- T,,)/(qd/k). (4) 

The non-dimensional governing equations for the 
quasi-steady two-dimensional motion are 

u,+v, = 0 (5a) 

Re(Uu,+uu,+vu,) = -p,~+u,,+u_“,V (5b) 

Re( Uv, + UZ), + VU,) = -pY + (v,, + v,,) + Gr T/Re 

(5c) 

Ma( UH, + uH, + vH,,) = H,, + H,, (5d) 

where ZA = v = 0 in the solid region. The Reynolds 

number, the Grashof number, and the Marangoni 

number are defined in the usual way by 

Re = yqd’/(kpu) @a) 

Gr = g/Ylqd”/(kv*) (6b) 

Ma = RePr (6~) 

where the Prandtl number is given by Pr = v/u. The 
Marangoni number Mu determines the relative 
importance of thermocapillary convection to thermal 
diffusion and the Reynolds number Re determines the 
relative importance of thermocapillary convection to 

viscous diffusion. The relationship between the 
enthalpy and temperature becomes 

T= H forH< H, 

T= T,,, forH,< Hc H, 

T= H-L forH> H, 

where 

H, = (T,,, - T,)k/qd, H, = H, + L. 

The boundary conditions are 

v=o 

uY = H, 

aty=O 

zl=o 7 
v=o 1 at S(x, y) = 0 

H = H, 

H-+0 as Ixl,y+ ~0. 

(74 

(7b) 

(7c) 

(7d) 

(8a) 

(8b) 

(8~) 

In conditions (8b), S(x, y) = 0 is the interface between 

the solid and the liquid region. 
In the present system, the effect of buoyancy driven 

flow can be neglected as compared to the surface 
tension driven flow. Eliminating the pressure from 
equations (5) we obtain 

Re( UL + ti,J, - k&J = L + 5, (9a) 

Ma( UH, f ti,)H, - WV) = H, + H,, (9b) 

5 = -(ti,Y+ti,) (9c) 

where the stream function $ is given by 

u = tiV, c= -tiX (10) 
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and the vorticity is given by 

i’ = Y, -u,.. 

The boundary conditions are 

$=O 

tV = -H, 

where 

(11) 

-I 
H, = 

1x1 < I .o 

0 1x1 > 1.0 I 

aty=O (12a) 

X and Y are the lengths of the physical domain in the 
s- and y-directions. respectively: K, and g, are the 
lengths of the computational domain in the K- and q- 
directions, respectively ; a and h are the stretching 
parameters which vary from zero (no stretching) to 
large values which produce the most refinement near 

the origin. A typical grid point distribution in the 
physical domain produced by equations (13) is shown 
in Fig. 2. 

at S(X, y) = 0 (12b) 

H = H, 

H-+0 as ]xl,y -+ x. (12c) 

3. NUMERICAL PROCEDURE 

During surface melting there is a small molten 
region on the surface of the workpiece, where the 
large temperature and velocity gradients exist. It is 

necessary to place more grid points in the molten 
region than in the solid region. Analytical coordinate 

transformations which are used to optimize the grid 
point placement and transform a non-uniform grid in 
the physical domain into an equally spaced grid in the 

computation domain are given by 

K = rct{B+sinhm ’ [(2x/X) sinh (&)]/a-0.5) (13a) 

v = ~(1 -e -““)/(I -e-“) (t3b) 

The governing equations (9) and boundary con- 
dition (12) are expressed in terms of transformation 
and then finite-difference equations are constructed 
using a second-order accurate expression. It is 
worth pointing out that the solid-liquid interface, 
S(x,,r) = 0, is not known a priori, and is a part of the 
solution. In the present paper we adopt the H, value 
to locate the position of the solid-liquid interface. If 
H is greater than H,, then 5, I+/I and Hare to be solved 

by the governing equation (9). If H is less than H,, then 
only the conduction equation is solved. On account of 
the solid-liquid interface being a curved delineation, 
the momentum equation adjacent to the interface 
must be carefully handled. At this step we use a finite- 
difference representation of the second-order deriva- 
tive at a node near a curved boundary [l I]. 

The solution of the difference equation starts from 

FIG. 2. The distribution of the (61 x 31) grid points in the physical plane with stretching parameters u = 5, 
b = 5. 
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an initial shape of the solid-liquid interface deter- 
mined by solving the pure conduction equation. The 

initial guesses for II/ and 5 in the liquid region are 
selected. The difference equation for 5 is solved at 
iteration m + 1 using II/ and H from iteration m to form 
the coefficients in the non-linear terms and boundary 
conditions, The derivatives in the x-direction are 
treated implicitly while derivatives in the y-direction 
are treated explicitly. After the new 5 is obtained, the 
difference equation $ and H can be solved iteratively 

using line successive over-relaxation (LSOR) with an 
approximated optimized relation factor for a given 
mesh. The new solutions of stream function and 
enthalpy are then used to correct the solid-liquid 
interface and the initial guesses of $ and H. The 

procedure can be repeated until the difference between 
two subsequent computations is within a specified 
tolerance. For the present study, the relative error 
criterion is chosen as ](p” - &“d)/4max] < F, where 4 
is any physical variable. The value of E is chosen as 
0.0001 for the solution of $ and Hand 0.0025 for the 

solution of 5. 

4. RESULTS AND DISCUSSION 

The computation domain must be chosen large 
enough to fit the proper assumption of semi-infinite 
space. In the present study, the dimensionless width 
and depth, are selected as 20 and 10, respectively. The 
(81 x 41) grids are used in the computational domain. 
We select grid control parameters a = 10 and b = 10 
to show that there are (51 x 21) grids in the molten 
region. The typical distribution of dimensionless sur- 
face enthalpy is shown in Fig. 3. It attains a maximum 
value near the centre and approaches zero as 1x1 > 3. 
The temperature gradient becomes the greatest near 
the edge of the laser beam (Ix] = I). Kou et al. [l] 
considered the present problem without consideration 
of the influence of thermocapillary convection. In 
order to check our results, we have repeated the cal- 
culation with the same conditions. The present results 
agree with those of Kou et al. [l]. The effect of the 
latent heat of fusion on the melting zone is of interest. 
Figure 4 shows the interface shapes of Ma = 100, 

FIG. 3. Surface enthalpy distribution for Ma = 100, Pr = 
0.01, U = 0.00001, H, = 0.2, and H, = 0.25. 
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FIG. 4. Interface shapes for Ma = 100, Pr = 0.01, 
U = 0.00001, and H, = 0.2 with L = 0 and 0.05. 

Pr = 0.01, H, = 0.2 with L = 0 and 0.05. The case of 

L = 0 corresponds to the case when the latent heat 
effect is excluded. The melting region without the con- 
sideration of latent heat of fusion is larger than that 
with the latent heat effect. Under the same Re the 
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FIG. 5. Contours for (a) streamlines. (b) isothermal lines for 
convection and (c) isothermal lines for conduction, with 
Mu = 1000, Pr = 0.1, U = 0.0008, H, = 0.2, L = 0.05, and 

H, = 0.25. 
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__ 

FIG. 6. Interfxe position for Mu = 500, Pr = 0.1, and 
H, = 0.25 with U = 0.01 and 0.005. 

magnitudes of H, and L for pure aluminium and Al- 
Mg-Si alloy (6061 aluminium) are 0.4826,0.2814 and 
0.2255,0.133, respectively. It is obvious that the latent 
heat of fusion for the metals has a profound effect on 
determining the melting shape. 

Figures 5(a) and (b) demonstrate that the iso- 
thermal lines and streamlines are no longer sym- 
metrical about the central line owing to the influence 
of the external moving heat source. In general, the 

surface tension temperature coefficient y is positive for 
the liquids. Thus the surface tension at the edge of the 
molten region is maximum while the surface tension 
beneath the centre of the moving heat flux is 
minimum. Therefore, along the liquid-gas free 
surface, there is a surface-tension gradient which pro- 

Interface -I 

1.5 -1.5 

0 

InterfaceJ\ 

(4 

duces a radial outward motion from the centre of 
highest temperature to the edge of the molten region. 
The thermocapillary force driving the fluid particles 
to the direction of increasing surface tension is 
balanced by the viscous shear stress at the liquid- 
gas interface fluid, and it results in inducing the bulk 
motion of the fluid. In Fig. 5(a) there are two vortices 
on the counter sides of the pool and the streamlines 
are closer and the velocities are faster near the liquid- 
gas interface. The velocity is higher near the edge 
of the melting pool because the maximum temperature 
gradient occurs near 1x1 = 1 (Fig. 3). Unlike the pre- 
vious results [5,6], the two vortices have different sizes 
and are asymmetric along the centre of the laser beam 
(x = 0). The vortex near the trailing end of the scan- 

ning velocity is stronger than that near the leading 
edge. The isothermal lines shown in Fig. 5(c) are 

obtained by conduction only. In comparing Figs. 5(b) 
and (c), we can see that due to the presence of the 
bulk flow, the depth of the melting pool is increased 
and the isothermal lines are modified significantly near 
the edge of the melting pool. The heat transfer by 
convection is enhanced in the y-direction and the tem- 
perature profile is twisted in the x-direction. The scan- 
ning velocity U determines the absorbed energy per 
unit area of the workpiece. It is obvious that the faster 
the velocity scans over the workpiece, the less energy 
will be absorbed. Figure 6 demonstrates the influence 
of the moving velocity U on the shape of the melting 
region. The increasing value of I/ will shift the solid- 

liquid interface to the trailing end of the moving exter- 
nal heat source and increase the distortion of the 
molten pool. When the values of Ii increase the 
maximum depth of the melting pool decreases and the 

x 

1.5 0 -I 5 

(b) 

FIG. 7. Contours for streamlines and isothermal lines for different Marangoni number: (a) Ma = 120, 
Pr = 0.01, HI = 0.25, and U = 0.00001; (b) Ma = 100, Pr = 0.01, H, = 0.25, and U = 0.00001. 
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pool region gets smaller. The present results display 
that the pool shape is changed significantly by the 

external moving heat source. 
Figure 7 shows the effect of Marangoni number Ma 

(or Re) with Pr fixed. When Mu is large, the fluid flow 
is so vigorous that the counter-rotating vortex carries 
higher energy particles down to the melt and then 
leads to deeper penetration in the pool. The present 
results are consistent with those of Chan et al. [7] and 
Basu and Srinivasan [6] in that the melting depth 
increases with increasing values of Ma. For 
Ma = 120, the formation of twin secondary cells 
appears at both corners. 

It is interesting to note that the Prandtl number Pr 
is defined as the ratio of kinematic viscosity and heat 
diffusivity. As Pr increases, the material is heated up 
slowly. Thereby the thermal diffusion becomes more 
difficult. It can be expected that the melting depth will 
decrease with higher Pr. The influence of Pr on the 
shape of the pool is illustrated in Fig. 8. This result is 
consistent with that of Chan et al. [7] in that the ratio 
of width to depth of the melting pool increases with 
increasing Pr. Furthermore, it is obvious that the 
effect of scanning velocity is more significant for 
higher Pr. The present results demonstrate that for 
higher Pr the interface position is shifted increasingly 
toward the trailing edge owing to the momentum 
effect generated by the scanning velocity of the heat 
source. The isothermal lines and streamlines in the 
molten region for different Marangoni number Mu 
(or Pr) with Re fixed are shown in Figs. 9 and 10. 
With the consideration of the effect of thermocapillary 
convection, the melting depth is increased significantly 
and the melting width is enlarged slightly for 
Mu = 50, while the melting depth is decreased and 
the melting width is increased for Ma = 10 000. When 
Ma = 10 000 the soliddliquid interfaces for both con- 
duction and convection obviously shift to the opposite 
direction of scanning velocity. In comparison with the 
case of Mu = 50, the streamline and isotherm patterns 

x 
2 -20 

1 
0.6 

FIG. 8. Interface position for Re = 5000, U = 0.0005, and 
H, = 0.25 with Pr = 0.01, 0.1, 0.8, and 2.0. 

(a) 
06 

20 
- 

- 
(b) 

03 Y 

06 

06 

(c) 
FIG. 9. Contours for (a) streamlines, (b) isothermal lines for 
convection and (c) isothermal lines for conduction, with 
Mu = 50, Pr = 0.01, U = 0.0005, H, = 0.2, L = 0.05, and 

H, = 0.25. 

are modified dramatically. Near the trailing edge 
of the melting pool there exists a vortex of twin 
secondary cells which is stronger than that near the 

leading edge. 

5. SUMMARY 

The finite-difference method with grid-stretching 
transformation has been employed to study the heat- 
and fluid-flow phenomena in a melting pool generated 
by high energy power laser impinging on a semi- 
infinite workpiece. The results presented in this 
paper reveal many important aspects of surface ten- 
sion convection (also called thermocapillary con- 
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(c) 
FIG. 10. Contours for (a) streamlines, (b) isothermal lines 
for convection and (c) isothermal lines for conduction, with 
Mu = 10000, Pr = 2.0, Ii = 0.0005, H, = 0.2, L = 0.05, and 

H, = 0.25. 

vection) in the melt. The principal findings of the work 

may be summarized as follows : 

(1) Contrary to the previous results of Chan et al. 

[7], the present results show that the size of the melting 

pool is reduced significantly when the effect of latent 
heat of fusion is included. 

(2) We find and validate that the scanning velocity 

has a pronounced influence on the flow pattern and 
shape of the melting pool. For faster scanning 
velocity, the melting depth decreases and the melting 
shape distorts more drastically. 

(3) The depth of the melting pool increases with an 
increase in the Marangoni number at fixed Prandtl 

number. This results from the increasing strength of 
the thermocapillary convection. 

(4) The melting depth decreases with an increase in 

the Prandtl number. The flow fields, the temperature 
fields, and the melting shape are strongly influenced 
by the interaction of thermocapillary convection with 
the scanning velocity of the heat source if the fluid has 
high Prandtl number. 
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ECOULEMENT THERMOCAPILLAIRE DE SURFACE EN FUSION DU A UN FLUX 
DE CHALEUR MOBILE 

R&sumC-L’kcoulement et le transfert thermique convectif qui se produisent pendant la fusion laser sent 
examinks i la surface ri I’aide d’une skrie de calculs numkriques. Les kquations du mouvement et de I’knergie 
sont rt-solues par une mkthode aux diffirences finies avec une transformation de d&formation de grille qui 
place plus de mailles dans la rkgion de fusion. On considtre les effets de la convection thermocapillaire 
dans le bain et la vitesse de d&placement de la source externe de chaleur sur la forme de I’interface solidee 
liquide. Les rtsultats montrent que la chaleur latente de fusion et difftrents parametres sans dimension 

associks au flux de chaleur mobile ont des effets importants sur la fusion. 
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THERMOKAPILLARE STRGMUNGEN BEIM OBERFLACHENSCHMELZEN IN 
ANWESENHEIT EINER BEWEGLICHEN WARMEQUELLE 

Zusammenfassung-Mit Hilfe einer Reihe von numerischen Berechnungen wird die Konvektionsstriimung 
und der Warmeiibergang beim Anschmelzen einer Oberflache mittels Laser untersucht. Die Gleichungen 
fur Imp&transport und Energie werden mit Hilfe eines Finite-Differenzen-Verfahrens unter Verwendung 
einer Transformation zur Gitterstreckung gel&, wodurch im geschmolzenen Gebiet mehr Gitterpunkte 
untergebracht werden konnen. Der EinfluD der thermokapillaren Konvektionsstromung in der Schmelze 
und der Bewegungsgeschwindigkeit der aul3eren Wirmequelle auf die Form der Fest/Fliissig-Grenzflliche 
wird untersucht. Es zeigt sich, daB die Schmelzwlrme und unterschiedliche dimensionslose Parameter, 
welche die bewegliche auBere Wlrmequelle beschreiben, einen starken EinfluD auf die Bestimmung der 

Schmelzform ausiiben. 

TEPMOKAIIMJI~RPHbIE TE’4EHHR IIPH IIJIABJIEHMM TEJIA, BbI3BAHHOM 
)JBIDKYII(HMCJI TEI-IJIOBbIM MCTO’IHHKOM 

AHao+aunn-TIpe ~OMOUA YHcnewibIx pacqeToa 5iccnenyIoTcn KOHB~KTABH~I~ TennonepeHoc H TeqeHHe 

;I(HAKOCTH B npOL,ecCe na3epOe WlaBKB. YpaBHeHHS KOnHWcTBa ABHXCeHWR W YpaBHeHHe 3HeprHH 

PeIUalOTCS KOHeWO-pa3HOCTHbIM MCTOAOM C npeo6pa3oeamiebr, A~OpM5ipyhX4iM OZTKY, OpH 

K0T0p0~ ysensiweaexn KO~AS~CTBO ToqeK ceTxq nonanawwix B 06naCTb pacnnasa. Hccnenyercn 
BnaaHAeTepMoKanannnpHoii KOHBeKWB B pacnnaeen CKO~OCTUABA~~HH~BH~~H~~OUCTO~HHK~T~~~~ 

Ha $OpMy I-PaHHIIbI pa3Aena TBepAOe TeJIIFxGiJJKOCTb. nOnyYeHHbIe Pe3)'nbTaTbl IlOKa3bIBaEOT, 'IT0 

@OpMa PaCnnaBa B 6onbmoii CTeneHH SLBHCHT OT TennOTbI IL"aBneHHIl H paW,H'IHbIX 6e3pa3MepHbIX 


